Entropy production of a small quantum system strongly interacting with an environment: A computational experiment

Ryoichi Kawai
Department of Physics
University of Alabama at Birmingham

Xian He
Nanchang University

Ketan Goyal
Nordita
Sir Arthur Eddington

“The second law of thermodynamics is the only physical theory of universal content concerning which I am convinced that, within the framework of the applicability of the basic concepts, it will never be overthrown.” (1949)

Albert Einstein

“The law that entropy always increases holds, I think, the supreme position among the laws of nature. If someone points out to you that your pet theory of the universe is in disagreement with Maxwell's equation – then so much the worse for Maxwell's equations … but if your theory is found to be against the second law of thermodynamics, I can give you no hope; there is nothing for it but to collapse in deepest humiliation.” (1928)
When a system strongly interacts with environments, is the second law correct?

\[\Delta S \geq \frac{Q}{T} \]

correct?
Thermal Equilibrium - Why is the Gibbs state so special?

Maximum entropy principle

\[S[\rho] = - \text{tr}(\rho \ln \rho) \]

\[E = \text{tr}(\rho H) = \text{tr}(\rho_G H) \]

\[\rho_G = e^{-\beta H} / \text{tr} e^{-\beta H} \]

\[S[\rho_G] - S[\rho] = S[\rho \| \rho_G] \geq 0 \]

Unitary evolution

\[\partial_t S[\rho \| \rho_G] = 0 \]

Maximization

Decoherence in energy basis

Decoherence Theory

- Entanglement with environment
- Why and how does the environment choose energy basis for decoherence?
- Does it have to be energy basis?
- Zurek's superselection (einselection)?
Decoherece

System + Environment

\[\frac{d}{dt} \rho = -i[H, \rho] \quad H = H_S \otimes I + I \otimes H_B + \lambda X_S \otimes Y_B \]

Reduced system

\[\frac{d}{dt} \rho_S = -i[H_S, \rho_S] - i\lambda [X_S, \eta_S], \quad \eta_S = \text{tr}_B (Y_B \rho) \quad \rho_S = \text{tr}_B \rho \]

\[\frac{d}{dt} \rho_S = -i[H_S, \rho_S] - i\lambda [X_S, \eta_S], \quad \lambda \ll 1 \quad \text{Diagonal in energy basis} \]

\[\frac{d}{dt} \rho_S = -i[H_S, \rho_S] - i\lambda [X_S, \eta_S], \quad \lambda \gg 1 \quad \text{Diagonal in pointer basis} \]
Measurement = Decoherence in observable basis

\[|\psi_S\rangle = \sum_i c_i |\omega_i\rangle \]

\[\hat{\Omega} |\omega_i\rangle = \omega_i |\omega_i\rangle \]

before measurement

\[\rho_\prec = \sum_{ij} c_i c_j^\ast |\omega_i\rangle\langle\omega_j| \quad \Rightarrow \quad \rho = \sum_i |c_i|^2 |\omega_i\rangle\langle\omega_i| = \sum_i |\omega_i\rangle\langle\omega_i| \rho_\prec |\omega_i\rangle\langle\omega_i| \]

after measurement

Continuous measurement by environment

\[\rho \quad \rightarrow \quad \sum_j |e_j\rangle\langle e_j| \rho_G |e_j\rangle\langle e_j| \quad \lambda \ll 1 \quad |e_j\rangle = \text{energy basis} \]

\[\rho \quad \rightarrow \quad \sum_j |\pi_j\rangle\langle\pi_j| \rho_G |\pi_j\rangle\langle\pi_j| \quad \lambda \gg 1 \quad |\pi_j\rangle = \text{pointer basis} \]
Energy basis

- ρ_{11}
- ρ_{22}
- ρ_{33}
- ρ_{44}

- ρ_{12}
- ρ_{13}
- ρ_{23}
- ρ_{24}
- ρ_{34}

-指针限制

heat conduction

- $\lambda_1=1.55$
- $\lambda_2=1.05$
- $\lambda_3=0.55$
- $\lambda_4=0.10$
System (S) and Environment (B)

Weak coupling

- System (S) and Environment (B) are separable.
- Thermodynamics concerns only S.
- Equilibrium: $\rho_S = e^{-\beta H_S}/Z_S$
- Maximum entropy principle:
 $(\max S(\rho_s), \text{tr}\{\rho_s H_S\} = E)$

Strong coupling

- System (S) and Environment (B) are not well separated.
 (V_I belongs to both S and B)
- Maximum entropy?
- Extremely strong coupling:
 - Equilibrium: diagonal in pointer basis
 - Quantum Zeno effects
The laws of thermodynamics determine the energy transaction between the system and its exterior \textit{without knowing the state of the exterior}.

Is the thermodynamics of systems strongly interacting with the environment consistent with the conventional laws of thermodynamics?

- Yes, but needs some modification.
- No, the laws of thermodynamics depend on the state of the environment.
- No, we need a completely new set of laws.

Hamiltonian of mean force
Hamiltonian of Mean Force

Equilibrium

\[\rho_{SB} = \frac{e^{-\beta H_S}}{Z_S} \otimes \frac{e^{-\beta H_B}}{Z_B} \]

\[E_{\text{total}} = \text{tr}_{SB} \left\{ (H_S + H_B + H_I) e^{-\beta (H_S + H_B + H_I)} \right\} / Z_{SB} \]

Effective System Hamiltonian

\[\widetilde{H}_S = -\frac{1}{\beta} \ln \left[\text{tr}_B \left\{ e^{-\beta (H_S + H_B + H_I)} \right\} / Z_B \right] \]

\[\tilde{U}' = \text{tr}_S \{ \rho_S(t)(\tilde{H}_S - H_S) \} \]

\[\tilde{U}'' = \text{tr}_S \{ \rho_S(t) \tilde{\beta} \partial_\beta \tilde{H}_S \} \]

\[\tilde{U} = U + \tilde{U}' + \tilde{U}'' \]

\[\tilde{S}_S = S_S + \beta \tilde{U}'' \]

\[\tilde{F} = F + \tilde{U}' \]

\[\tilde{W} = W \]

\[\tilde{Q} = Q - \Delta V_{SB} + \tilde{U}' + \Delta \tilde{U}'' \]

Conventional Thermodynamics

\[\Delta F \geq W \]
\[\Delta S \geq \beta Q \]

Equilibrium 1
\[F_0, S_0, U_0, \ldots \]

Equilibrium 2
\[F_1, S_1, U_1, \ldots \]

\[\Delta F = W_{\text{rev}} \]
\[\Delta S = \beta Q_{\text{rev}} \]

Beyond conventional thermodynamics

Non-Equilibrium

Equilibrium
\[F_1, S_1, U_1, \ldots \]

\[W \]
\[Q \]
\[Q_{\text{rev}} \]

Equilibrium
\[F_0, S_0, U_0, \ldots \]
Measurable Quantities

Internal energy
\[U(t) = \text{tr}_S \{ \rho_s(t) H_S \} \]

Work = energy injected into the whole system by a “classical external agent”
= change of the total energy
\[W(t) = \text{tr}_{SB} \{ \rho_{SB}(t) H_{SB} \} - \text{tr}_{SB} \{ \rho_{SB}(t_0) H_{SB} \} \]

Heat = energy released from the environment
\[Q(t) = \text{tr}_B \{ \rho_B(t_0) H_B \} - \text{tr}_B \{ \rho_B(t) H_B \} \]

Coupling energy
\[V_1(t) = \lambda(t) \text{tr}_{SB} \{ \rho_{SB}(t) H_I \} \]

Energy conservation law:
\[W(t) + Q(t) = \Delta U(t) + \Delta V_1(t) \quad 1^{\text{st}} \text{law?} \]
2nd law and Entropy Production

Thermodynamics

\[\Sigma_Q = \Delta S - \beta Q \geq 0 \]
\[\Sigma_W = \beta (W - \Delta F) \geq 0 \]

Non-equilibrium statistical mechanics

\[\Sigma_S = \Delta S_s - \beta Q \geq 0, \quad S_s = - \text{tr}_s \rho_s \ln \rho_s \]
\[\Sigma_{MF} = \Sigma_S + \beta \tilde{U}' \quad (\geq 0?) \]
Designing experiments

\[\lambda(t) = \begin{cases}
\text{slowly turn on the coupling for } \lambda_1 \text{ and 0 for } \lambda_2 & t_1 > t > t_0 \\
\text{keep the coupling constant} & t_2 > t > t_1 \\
\text{slowly turn off the coupling} & t_3 > t > t_2 \\
\text{keep the coupling off} & t_4 > t > t_3
\end{cases} \]
Relaxation of No-equilibrium Initial state

\[
\begin{align*}
\lambda = 0 & \rightarrow 1 \\
\Delta u_0, w_0, \Delta s_0
\end{align*}
\]

\[
\begin{align*}
\lambda = 1 \\
\lambda = 1 \rightarrow 0 \\
\lambda = 0
\end{align*}
\]

\[
\begin{align*}
Q_{qs}(t_2), W_{qs}(t_2) \\
Q_{qs}(t_4), W_{qs}(t_4)
\end{align*}
\]
Protocol 1 (quasi static)

\[\begin{array}{|c|c|c|c|}
\hline
&t_0& t_1& t_2& t_3& t_4 \\
\hline
\lambda &= 0 \rightarrow 1 & \lambda &= 1 & \lambda &= 1 \rightarrow 0 & \lambda &= 0 \\
\Delta u_0, w_0, \Delta s_0 & & \Delta \mathcal{F} = 0, \quad \Delta \mathcal{S} = 0, \quad \Delta \mathcal{U} = 0 & & \\
\hline
\end{array} \]

\[\begin{align*}
\Delta \mathcal{F} &= W_{qs}(t_2) - w_0 \\
\Delta \mathcal{S} &= \beta Q_{qs}(t_2) + \Delta s_0 \\
\Delta \mathcal{U} &= \Delta U_{qs}(t_2) - \Delta u_0 \\
\end{align*}\]

\[\begin{align*}
\Delta \mathcal{F} &= W_{qs}(t_2) - W_{qs}(t_4) \\
\Delta \mathcal{S} &= \beta [Q_{qs}(t_2) - Q_{qs}(t_4)] \\
\Delta \mathcal{U} &= U_{qs}(t_2) - U_{sc}(t_4) \\
\end{align*}\]
Protocol 2 (Relaxation)

\[\Delta F = 0, \quad \Delta S = 0, \quad \Delta U = 0 \]

\[\Sigma_w(t_2) = W(t_2) - \Delta F \]
\[= W(t_2) - W_{qs}(t_2) + W_{qs}(t_4) \]

\[\Sigma_Q(t_2) = \Delta S - \beta Q(t_2) \]
\[= \beta [Q(t_2) - Q_{qs}(t_2) + Q_{qs}(t_4)] \]

\[\Sigma_w(t_4) = W(t_4) \]
\[\Sigma_Q(t_4) = -\beta Q(t_4) \]
Various expression of entropy production

Experimental\[\Sigma_W(t) = W(t) - W_{qs}(t) + W_{qs}(t_4) \]

\[\Sigma_Q(t) = \beta [Q(t) - Q_{qs}(t) + Q_{qs}(t_4)] \]

Theoretical\[\Sigma_S(t) = \Delta S_s(t) - \beta Q(t) \]

Ad hoc correction\[\Sigma_{QV}(t) = \Sigma_Q + \frac{\beta}{2} [V_1(t) - V_1^{qs}(t)] \]

\[\Sigma_{SV}(t) = \Sigma_S + \frac{\beta}{2} \Delta V_1(t) \]
Spin-Boson Model

\[H_{SB} = H_S + H_B + \lambda(t)H_1, \quad 1 \geq \lambda(t) \geq 0 \]

\[H_S = \frac{\omega_0}{2} \sigma_z \otimes I + \frac{\omega_0}{2} I \otimes \sigma_z + \Lambda(\sigma_+ \otimes \sigma_- + \sigma_- \otimes \sigma_+) \]

\[H_B = \sum_{j \geq 1} \omega_j a_j^\dagger a_j \]

\[H_1(t) = \lambda(t) X_S \otimes Y_B. \]

\[Y_B = \sum_j \nu_j \left(a_j^\dagger + a_j \right), \quad J(\omega) = \frac{2\kappa}{\pi} \frac{\omega \gamma}{\omega^2 + \gamma^2} \]

\[X_S = H_S \text{ and } \sigma_x \otimes I + I \otimes \sigma_x \]
Computation

\[
\text{tr}_B \left\{ \frac{d}{dt} \rho_{SB} = -i[H_{SB}, \rho_{SB}] \right\} \quad \Rightarrow \quad \frac{d}{dt} \rho_S = -i[H_s, \rho_S] - i\lambda(t)[X_s, \eta_s]
\]

where \(\eta_s = \text{tr}_B \{ Y_B \rho_{SB} \} \)

\[
W(t) = \int_{t_0}^{t} \lambda(\tau) \text{tr}_S \{ X_s \eta_s(\tau) \} \, d\tau
\]

\[
Q(t) = \int_{t_0}^{t} \left[\text{tr}_S \{ H_s \rho_s(\tau) \} + \lambda(\tau) \text{tr}_S \{ X_s \eta_s(\tau) \} \right] \, d\tau
\]

\[
V_1(t) = \lambda(t) \text{tr}_S \{ X_s \eta_s(t) \}
\]

\[
C_{SB}(t) \equiv \langle X_s \otimes Y_B \rangle - \langle X_s \rangle \langle Y_B \rangle = \text{tr}_S \{ X_s \eta_s(t) \} - \text{tr}_S \{ X_s \rho_s(t) \} \cdot \text{tr}_S \{ \eta_s(t) \}.
\]
Hierarchical Equations of Motion (HEOM)

Non-equilibrium initial state

\[\rho_{SB}(t_0) = \rho_S(t_0) \otimes e^{-\beta H_B} / Z_B \]

Environment correlation

\[\langle Y_B(\tau) Y_B(0) \rangle \approx (c_1 e^{-\gamma_1 \tau} + c_2 e^{-\gamma_2 \tau} + 2c_0 \delta(\tau)) \]

\[\zeta_{n,m} = \text{auxiliary operators } \in \mathcal{H}_S \]

\[\frac{d}{dt} \zeta_{n_1,n_2}(t) = -i[H_S, \zeta_{n_1,n_2}] - \]

\[- (\gamma_1 n_1 + \gamma_2 n_2) \zeta_{n_1,n_2}(t) - \lambda c_0 \lambda^2(t) S^- S^- \zeta_{n_1,n_2}(t) \]

\[- i n_1 \lambda(t) g_1 \zeta_{n_1-1,n_2}(t) - i n_2 \lambda(t) g_2 \zeta_{n_1,n_2-1}(t) \]

\[- i \lambda(t) S^- \{ \zeta_{n_1+1,n_2}(t) + \zeta_{n_1,n_2+1}(t) \} \]

where \[S^\pm = [X_S, \cdot]_\pm, \quad g_j = \text{Re}\{c_j\} S^- + i \text{Im}\{c_j\} S^+ \]

\[\rho_s = \zeta_{0,0}, \quad \eta_s = \lambda(t) (\zeta_{1,0} + \zeta_{0,1}) + ic_0 S^- \zeta_{0,0} \]
Choice of X_S in $H_I = \lambda(t) X_S \otimes Y_B$

Extreme case:

\[X_S = H_S \Rightarrow [H_S, H_{SB}] = 0 \Rightarrow \Delta U = 0 \]

Diagonal elements of $\rho_S(t)$ in energy basis conserves but not off-diagonal elements

Dissipation takes place outside the system

A less extreme case:

\[X_S = \sigma_x \otimes I + I \otimes \sigma_x \]

Decoherence free state: $|\psi\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$

Final steady state ≠ conventional canonical equilibrium
Case I: $X_S = H_S$ \[\rho_S(t_0) = |00\rangle\langle 00| \]

- $\rho_S(t) = \rho_S(t_0)$
- Pure state
- Diagonal in energy basis
- No correlation with environment
Case II: \(X_S = H_S \), \(|\psi(t_0)\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle) \)

- \(\rho_S(t) \neq \rho_S(t_0) \)
- Pure state
- Not diagonal in energy basis
- Entanglement with environment
- Decoherence
Case III: \(X_S = H_S \), \(\rho_S(t_0) = e^{-\beta H_S}/Z_S \)

- \(\rho_S(t) = \rho_S(t_0) \)
- Mixed state
- Diagonal in energy basis
- Classical correlation with environment
- Decoherence
Case IV: $X_S = \sigma_x \otimes I + I \otimes \sigma_x$, $|\psi(t_0)\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$

Decoherence free state

$|\psi(t_0)\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle)$

Partial thermalization

Dissipation due to decoherence
Empirical Thermodynamic Laws for systems with strong coupling

\[\tilde{U} = U + V_1 \]

\[\tilde{S} = S_s + \frac{\beta}{2} V_1 \quad \tilde{F} = F + \frac{1}{2} V_1 \]

\[\tilde{Q} = Q \quad \tilde{W} = W \]

1st law: \[\tilde{W} + \tilde{Q} = \Delta \tilde{U} \]

\[(W + Q = \Delta U + \Delta V_1) \]

2nd law: \[\tilde{\Sigma} = \tilde{S}_s - \beta \tilde{Q} \quad (\geq 0?) \]

\[= S_s - \beta Q + \frac{\beta}{2} V_1 \]

Mean Force Theory

\[\tilde{U}' = \tilde{U}'' = \frac{1}{2} V_1 \]

\[\tilde{U} = U + \tilde{U}' + \tilde{U}'' \]

\[\tilde{S}_s = S_s + \beta \tilde{U}'' \]

\[\tilde{F} = F + \tilde{U}' \]

\[\tilde{W} = W \]

\[\tilde{Q} = Q - \Delta V_1 + \tilde{U}' + \Delta \tilde{U}'' \]
Professors Eddington and Einstein,

I hope you tell me if I collapsed in deepest humiliation.